Contoh Soal 1
Carilah turunan pertama dari :
a. y = 3x5 – 12x3 + 5x
b. y = 2x – 5x2 + 7x5
c. y = [latex]\frac {1} {3}[/latex] x2 – [latex]\frac {2} {3}[/latex] x2 + 3x
Pembahasan
Jawaban (a) :
- y = 3x5 – 12x3 + 5x
- y’ = 5 . 3x5 – 1 – 3 . 12x3 – 1 + 1 . 5x1 – 1
- y’ = 15x4 – 36x2 + 5
Jawaban (b) :
- y = 2x – 5x2 + 7x5
- y’ = 1 . 2x1 – 1 – 2 . 5x2 – 1 + 5 . 7 x5 – 1
- y’ = 2 – 10x + 35x4
Jawaban (c) :
- y = [latex]\frac {1} {3}[/latex] x2 – [latex]\frac {2} {3}[/latex] x2 + 3x
- y’ = 2 . [latex]\frac {1} {3}[/latex] x2 – 1 – 2 . [latex]\frac {2} {3}[/latex] x2 – 1 + 1 . 3x1 – 1
- y’ = [latex]\frac {2} {3}[/latex]x – [latex]\frac {4} {3}[/latex] x + 3
Contoh Soal 2
Carilah turunan pertama dari:
a. y = (x + 2) (2x – 7)
b. y = (3x + 4) (5x – 2)
c. y = (5x + 2) (x2 – 3)
Pembahasan
Jawaban (a) :
- y = (x + 2) (2x – 7)
- U = x + 2 maka U’ = 1
- V = 2x – 7 maka V’ = 2
- y = U . V
- y’ = U’ . V + U . V’
- y’ = 1 . (2x – 7) + (x + 2) . 2
- y’ = (2x – 7) + (2x + 4)
- y’ = 2x + 2x – 7 + 4 = 4x – 3
Jawaban (b) :
- y = (3x + 4) (5x – 2)
- U = 3x + 4 maka U’ = 3
- V = 5x – 2 maka V’ = 5
- y = U . V
- y’ = U’ . V + U . V’
- y’ = 3 (5x – 2) + (3x + 4) . 5
- y’ = 15x – 6 + 15x + 20
- y’ = 30x + 24
Jawaban (c):
- y = (5x + 2) (x2 – 3)
- U = 5x + 2 maka U’ = 5
- V = x2 – 3 maka V’ = 2x
- y = U . V
- y’ = U’ . V + U . V’
- y’ = 5 (x2 – 3) + (5x + 2) . 2x
- y’ = 5x2 – 15 + 10x2 + 4x
- y’ = 15x2 + 4x – 15
Contoh soal 3
Carilah turunan pertama dari:
a. y = [latex]\frac {x – 5} {4x + 2}[/latex]
b. y = [latex]\frac {2 – 5x} {x + 2}[/latex]
c. y = [latex]\frac {x^{2} + 1} {1 – x}[/latex]
Pembahasan
Jawaban (a) :
- y = [latex]\frac {x – 5} {4x + 2}[/latex]
- U = x – 5 maka U’ = 1
- V = 4x + 2 maka V’ = 4
- y = [latex]\frac {U} {V}[/latex]
- y’ = [latex]\frac {U’ . V – U . V’} {V^2}[/latex]
- y’ = [latex]\frac {1 (4x + 2) – (x – 5) . 4} {(4x + 2)^2}[/latex]
- y’ = [latex]\frac {4x + 2 – 4x + 20} {(4x + 2)^2}[/latex]
- y’ = [latex]\frac {22} {(4x + 2)^2}[/latex]
Jawaban (b) :
- y = [latex]\frac {2 – 5x} {x + 2}[/latex]
- U = 2 – 5x maka U’ = -5
- V = x + 2 maka V’ = 1
- y = [latex]\frac {U} {V}[/latex]
- y’ = [latex]\frac {U’ . V – U . V’} {V^2}[/latex]
- y’ = [latex]\frac {-5 (x + 2) – (2 – 5x) . 1} {(x + 2)^2}[/latex]
- y’ = [latex]\frac {-5x – 10 – 2 + 10x} {(x + 2)^2}[/latex]
- y’ = [latex]\frac {5x – 12} {(x + 2)^2}[/latex]
Jawaban (c) :
- y = [latex]\frac {x^{2} + 1} {1 – x}[/latex]
- U = x2 + 1 maka U’ = 2x
- V = 1 – x maka V’ = -1
- y = [latex]\frac {U} {V}[/latex]
- y’ = [latex]\frac {U’ . V – U . V’} {V^2}[/latex]
- y’ = [latex]\frac {2x (1 – x) – (x^{2} + 1) . -1} {(1 – x)^2}[/latex]
- y’ = [latex]\frac {2x – 2x^{2} + x^{2} + 1} {(1 – x)^2}[/latex]
- y’ = [latex]\frac {-x^{2} + 2x + 1} {(1 – x)^2}[/latex]
Contoh soal 4
Carilah turunan pertama dari :
a. y = (2x + 3)3
b. y = (2 – x)5
c. y = [latex]\sqrt {x^{2} + 5}[/latex]
Pembahasan
Jawaban (a) :
- y = (2x + 3)3
- U = 2x + 3 maka U’ = 2
- y(U) = U3 maka y'(U) = 3U2
- y’ = U’ . y'(U)
- y’ = 2 . 3U2
- y’ = 6 (2x + 3)2
Jawaban (b) :
- y = (2 – x)5
- U = 2 – x maka U’ = -1
- y(U) = U5 maka y'(U) = 5U4
- y’ = U’ . y'(U)
- y’ = -1 . 5U4
- y’ = -5 (2 – x)4
Jawaban (c) :
- y = [latex]\sqrt {x^{2} + 5}[/latex]
- y = (x2 + 5)1/2
- U = x2 + 5 maka U’ = 2x
- y(U) = U1/2 maka y'(U) = 1/2U-1\2
- y’ = U’ . y'(U)
- y’ = 2x . 1/2U-1/2
- y’ = x (x2 + 5)-1/2
- y’ = [latex]\frac {x} {\sqrt {x^{2} + 5}}[/latex]