Lompat ke konten

8 Contoh soal integral trigonometri dan pembahasan

  • oleh

Contoh soal integral trigonometri nomor 1

Nilai dari \int_{0}^{\pi} cos \ x \ dx adalah …
A. 0
B. \frac {1} {4}
C. 2
D. 1
E. \frac {1} {2}

Pembahasan

Aturan integral trigonometri:

  • ∫ cos x dx = sin x + C
  • ∫ sin x dx = – cos x + C
  • \frac {1} {cos^{2} \ x} dx = tan x + C

Dengan menggunakan aturan di atas diperoleh hasil sebagai berikut.

\int_{0}^{\pi} cos \ x \ dx = \left [ sin \ x \right ]_{0}^{\pi}
= (sin π – sin 0)
= (0 – 0) = 0

Soal ini jawabannya A.


Contoh soal integral trigonometri nomor 2

Nilai dari \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2 \ sin \ x + cos \ x) \ dx adalah …
A. -1 – \frac {1} {2} \sqrt {2}
B. 1 + \frac {1} {2} \sqrt {2}
C. -2 + \frac {1} {2} \sqrt {2}
D. 2 + \frac {1} {2} \sqrt {2}
E. 2 – \frac {1} {2} \sqrt {2}

Pembahasan

\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2 \ sin \ x + cos \ x) \ dx = \left [ - 2 \ cos \ x + sin \ x \right ]_{\frac {\pi} {4}}^{\frac {\pi} {2}}
= (- 2 cos \frac {\pi} {2} + sin \frac {\pi} {2}) – (- 2 cos \frac {\pi} {4} + sin \frac {\pi} {4})
= (- 2 . 0 + 1) – (- 2 . \frac {1} {2} \sqrt {2} + \frac {1} {2} \sqrt {2})
= 1 – (- \frac {1} {2} \sqrt {2}) = 1 + \frac {1} {2} \sqrt {2}

Soal ini jawabannya B.


Contoh soal integral trigonometri nomor 3

Nilai dari \int_{\frac{\pi}{2}}^{\pi} (2 \ sin \ x - 4 \ cos \ 2x) \ dx adalah …
A. -4
B. -2
C. 0
D. 2
E. 4

Pembahasan

\int_{\frac{\pi}{2}}^{\pi} (2 \ sin \ x - 4 \ cos \ 2x) \ dx = \left [ - 2 \ cos \ x - 4 . \frac {1} {2} .  sin \ 2x \right ]_{\frac {\pi} {2}}^{\pi}
= \left [ - 2 \ cos \ x - 2 .  sin \ 2x \right ]_{\frac {\pi} {2}}^{\pi}
= (- 2 cos π – 2 sin 2π) – (-2 cos \frac {\pi} {2} – 2 sin (2 . \frac {\pi} {2})
= ((- 2 . -1) – 2 . 0) – ((-2 . 0) – 2 . 0) = 2 – 0 – 0 = 2

Soal ini jawabannya D.


Contoh soal integral trigonometri nomor 4

Nilai dari ∫ x sin x dx adalah …
A. x cos x + C
B. -x cos x + C
C. x cos x + sin x + C
D. -x cos x + sin x + C
E. -x cos x – sin x + c

Pembahasan

Misalkan:

  • u = x maka du = dx
  • dv = sin x maka v = ∫ sin x dx = – cos x + C
  • ∫u dv = uv – ∫v du
  • ∫x sin x = -x cos x + c – ∫(- cos x) dx
  • ∫x sin x = -x cos x + sin x + C

Soal ini jawabannya D.


Contoh soal integral trigonometri nomor 5

Hasil ∫ (cos x sin 3x) dx adalah …
A. – \frac {1} {2} cos 4x – cos 2x + C
B. – \frac {1} {4} cos 4x – \frac {1} {2} cos 2x + C
C. – \frac {1} {8} cos 4x – \frac {1} {4} cos 2x + C
D. \frac {1} {8} cos 4x + \frac {1} {4} cos 2x + C
E. \frac {1} {4} cos 4x + \frac {1} {2} cos 2x + C

Pembahasan

  • sin 3x cos x = \frac {1} {2} sin (3x + x) + \frac {1} {2} sin (3x – x)
  • = \frac {1} {2} sin 4x + \frac {1} {2} sin 2x = \frac {1} {2} (sin 4x + sin 2x)
  • ∫ (cos x sin 3x) dx = ∫(\frac {1} {2} (sin 4x + sin 2x) dx = \frac {1} {2} ∫(sin 4x + sin 2x) dx
  • = \frac {1} {2} (-\frac {1} {4} cos 4x + (- \frac {1} {2} cos 2x) + C
  • = – \frac {1} {8} cos 4x – \frac {1} {4} cos 2x + C

Soal ini jawabannya C.


Contoh soal integral trigonometri nomor 6

Hasil dari ∫ (sin5 2x cos 2x) dx adalah …
A. – \frac {1} {5} sin6 2x + C
B. – \frac {1} {10} sin6 2x + C
C. – \frac {1} {12} sin6 2x + C
D. \frac {1} {12} sin6 2x + C
E. \frac {1} {10} sin6 2x + C

Pembahasan

Misalkan:

  • u = sin 2x maka du = 2 cos 2x dx atau dx = \frac {du} {2 \ cos \ 2x}
  • ∫ (sin5 2x cos 2x) dx = ∫u5 cos 2x \frac {du} {2 \ cos \ 2x}
  • = ∫\frac {1} {2} u5 du = \frac {1} {2} ∫u5 du
  • = \frac {1} {2} (\frac {1} {6}) u6 + C
  • = \frac {1} {12} sin6 2x + C

Soal ini jawabannya D.


Contoh soal integral trigonometri nomor 7

Hasil dari ∫ (cos3 2x sin 2x) dx = …
A. \frac {1} {4} cos4 2x + C
B. \frac {1} {4} sin4 2x + C
C. \frac {1} {6} cos4 2x + C
D. – \frac {1} {8} cos4 2x + C
E. – \frac {1} {8} sin4 2x + C

Pembahasan

  • u = cos 2x maka du = – 2 sin 2x dx atau dx = \frac {du} {-2 \ sin \ 2x}
  • ∫ (cos3 2x sin 2x) dx = ∫u3 sin 2x \frac {du} {-2 \ sin \ 2x}
  • = ∫- \frac {1} {2} u3 du = – \frac {1} {2} ∫u3 du
  • = – \frac {1} {2} (\frac {1} {4}) u4 + C
  • = – \frac {1} {8} cos4 2x + C

Soal ini jawabannya D.


Contoh soal integral trigonometri nomor 8

Hasil \int_{0}^{\frac {\pi} {6}} (sin \ 4x \ cos \ 2x) \ dx = …
A. \frac {4} {3}
B. \frac {2} {3}
C. \frac {1} {3}
D. \frac {7} {24}
E. – \frac {1} {3}

Pembahasan

  • sin 4x cos 2x = \frac {1} {2} sin (4x + 2x) + \frac {1} {2} sin (4x – 2x)
  • = \frac {1} {2} sin 6x + \frac {1} {2} sin 2x = \frac {1} {2} (sin 6x + sin 2x)
  • \int_{0}^{\frac {\pi} {6}} (sin \ 4x \ cos \ 2x) \ dx = \frac {1} {2} \int_{0}^{\frac {\pi} {6}} (sin \ 6x \ + sin \ 2x) \ dx
  • = \frac {1} {2} (\left [ - \frac {1} {6} \ cos \ 6x - \frac {1} {2} cos \ 2x \right ]_{0}^{\frac {\pi} {6}})
  • = – \frac {1} {2} (\frac {1} {6} cos π + \frac {1} {2} cos \frac {\pi} {3}) – (\frac {1} {6} cos 0 + \frac {1} {2} cos 0))
  • = – \frac {1} {2} (- \frac {1} {6} + \frac {1} {2}) – (\frac {1} {6} + \frac {1} {2})
  • = – \frac {1} {2} (- \frac {1} {6} = \frac {1} {12}

Jawaban: –

You cannot copy content of this page